Chlamydia pneumoniae induces nitric oxide synthase and lipoxygenase-dependent production of reactive oxygen species in platelets. Effects on oxidation of low density lipoproteins.

نویسندگان

  • Hanna Kälvegren
  • Helena Bylin
  • Per Leanderson
  • Arina Richter
  • Magnus Grenegård
  • Torbjörn Bengtsson
چکیده

There is increasing evidence that Chlamydia pneumoniae is linked to atherosclerosis and thrombosis. In this regard, we have recently shown that C. pneumoniae stimulates platelet aggregation and secretion, which may play an important role in the progress of atherosclerosis and in thrombotic vascular occlusion. The aims of the present study were to investigate the effects of C. pneumoniae on platelet-mediated formation of reactive oxygen species (ROS) and oxidation of low-density lipoprotein (LDL) in vitro. ROS production was registered as changes in 2',7'-dichlorofluorescin- fluorescence in platelets with flow cytometry. LDL-oxidation was determined by measuring thiobarbituric acid reactive substances (TBARs). We found that C. pneumoniae stimulated platelet production of ROS. Polymyxin B treatment of C. pneumoniae, but not elevated temperature, abolished the stimulatory effects on platelet ROS-production, which suggests that chlamydial lipopolysaccharide has an important role. Inhibition of nitric oxide synthase with nitro-L-arginine, lipoxygenase with 5,8,11-eicosatriynoic acid and protein kinase C with GF 109203X significantly lowered the production of radicals. In contrast, inhibition of NADPH-oxidase with di-phenyleneiodonium (DPI) did not affect the C. pneumoniae induced ROS-production. These findings suggest that the activities of nitric oxide synthase and lipoxygenase are the sources for ROS and that the generation is dependent of the activity of protein kinase C. The C. pneumoniae-induced ROS-production in platelets was associated with an extensive oxidation of LDL, which was significantly higher compared to the effect obtained by separate exposure of LDL to C. pneumoniae or platelets. In conclusion, C. pneumoniae interaction with platelets leading to aggregation, ROS-production and oxidative damage on LDL, may play a crucial role in the development of atherosclerotic cardiovascular disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, induces lectin-like oxidized low-density lipoprotein receptor 1 expression in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits.

Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) plays a major role in oxidized low-density lipoprotein-induced vascular inflammation. Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis, although its specific mechanism remains unknown. This study was conducted to investigate the mechanisms of LOX-1 expression in GroEL1 (a...

متن کامل

Chlamydia pneumoniae and Oxidative Stress in Cardiovascular Disease: State of the Art and Prevention Strategies

Chlamydia pneumoniae, a pathogenic bacteria responsible for respiratory tract infections, is known as the most implicated infectious agent in atherosclerotic cardiovascular diseases (CVDs). Accumulating evidence suggests that C. pneumoniae-induced oxidative stress may play a critical role in the pathogenesis of CVDs. Indeed, the overproduction of reactive oxygen species (ROS) within macrophages...

متن کامل

Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation.

The regulation of nonenzymatic and enzymatic lipid oxidation reactions by nitric oxide (.NO) is potent and pervasive and reveals novel non-cGMP-dependent reactivities for this free radical inflammatory and signal transduction mediator.NO and its metabolites stimulate and inhibit lipid peroxidation reactions, modulate enzymatically catalyzed lipid oxidation, complex with lipid-reactive metals, a...

متن کامل

Oxidized low density lipoprotein induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells

Exposure of cells to complex mixtures of oxidized lipids such as those found in oxidized low density lipoprotein (oxLDL) induce reactive oxygen and nitrogen species (ROS/RNS) formation. The source of the ROS/RNS within the cell is unknown and this is important since it is thought they may be involved in redox cell signaling. Although initially overlooked it is becoming clear that the mitochondr...

متن کامل

Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress

Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Thrombosis and haemostasis

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 2005